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ABSTRACT 

 

This report describes the numerical simulation of wind flow around bridges using the 

Finite Element Method (FEM) and the principles of Computational Fluid Dynamics 

(CFD) and Computational Structural Dynamics (CSD). Since, the suspension bridges are 

prone to the aerodynamic instabilities caused by wind this becomes a prime criterion to 

be checked during the design. If the wind velocity exceeds the critical velocity for flutter 

that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. 

Tacoma’s narrows bridge failure in Washington, USA is a classical example of this 

failure. Larsen and Walther (1997) used the Discrete Vortex Method (DVM) similar to 

the wind tunnel procedures. In this work, the computations are carried out for both the 

fixed and the moving bridge conditions. A Large Eddy Simulation (LES) turbulence 

model is used and the rigid body grid movement technique is adopted. The critical 

velocity for flutter is calculated directly using the free oscillation procedure similar to the 

approaches reported by Selvam et. al (1998 and 2000). The influence of grid on critical 

velocity is also studied. The computed critical velocity for flutter is in good agreement 

with the wind tunnel measurements. The conditions of flutter and no flutter are 

demonstrated clearly using the response of the bridge in time. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Overview 

The design of bridges, in particular long spanned ones, is challenging in the sense 

that there are many complicated issues to be considered. Amidst the loads to be 

considered, like dead load, live load, wind load, and earthquake load, the wind load 

becomes the prime concern for the design of the bridges. Traditionally, analysis of a 

bridge structure and the wind effects are studied using wind tunnel experiments. This 

usually takes 6-8 weeks and also it is very costly. With the explosive growth in the 

electronic and computer industry there has been a tremendous increase in the computing 

power and speed. Therefore, now the shift is towards computer modeling of the wind 

induced effects on a bridge structure by using the principles of Computational Structural 

Dynamics (CSD) and Computational Fluid Dynamics (CFD). This reduces cost and time 

considerably when compared to the traditional approach of wind tunnel experiments for 

design and analysis of bridges. 

 

1.2       Significance of this research  

The Tacoma Narrows Bridge at Washington, opened in 1940, is a well-known 

classical example of a bridge failure due to wind. This bridge had abnormally excessive 

deflections both during construction and service. A wind velocity as low as 42 mph 

ripped apart the bridge and tore it, buckling the stiffening girders at the mid-span 

(Bowers, 1940). This failure was due to the phenomenon of flutter. Flutter occurs if the 
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velocity of wind is higher than the critical velocity for a given bridge. This failure 

brought awareness to the designers around the world that wind can cause aerodynamic 

instability of bridges resulting in failure. Thus it becomes necessary and important to 

conduct sufficient aerodynamic studies of the bridge before construction so that the 

stability of the bridge against wind can be ensured. 

 

1.3       Organization of the report 

This report is organized in the form of chapters. The introduction chapter states 

the objective and necessity of the research problem and the current overview adopted by 

researchers across the globe in the Wind Engineering field. To understand the wind 

phenomenon and its effect of wind on structures, a clear knowledge of the wind forces 

and their behavior needs to be studied first. These issues are discussed in the second 

chapter. There is an abundant research being done on the aeroelastic studies in the field of 

computational wind engineering. The third chapter deals with a survey of the literature 

and current work being done on the study of bridge aerodynamics.  

Once the literature study and review is through, the numerical modeling becomes 

the focus. The fourth chapter talks about the issues involved in the numerical modeling 

and the computational techniques used in solving the Navier-Stokes equations. The 

numerical modeling techniques like finite element, finite difference or finite volume 

methods are grid-based systems wherein the flow is solved computationally upon a 

discrete system of grid points. The issues involved in the generation of an efficient grid 

for a given problem is detailed in chapter five. The outcome of the research and the 
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results are presented in chapter six. Conclusions, comments and suggestions for 

improvement and future work are dealt with in the last chapter. 

 

1.4      Objective  

The objective of this report is to develop a computer model based on the 

principles of computational fluid dynamics and computational structural mechanics and 

the finite element method to study the aeroelastic stability of bridges. The Great Belt East 

Bridge (GBEB) is chosen because there has been a lot of wind tunnel experimental data 

available for validation and comparison of the computer model. The objective is achieved 

systematically through the following steps. 

1. Build a computer model to simulate the bridge under fixed and moving conditions.  

2. Develop a Fluid-Structure Interaction (FSI) model for the critical velocity 

computations. 

3. Use the developed Computer model to study the effect of grid size and grid 

distribution and hence optimize.  

4. Compare and validate the results against the wind tunnel experiments and models 

being built upon by other researchers across the world for the same GBEB section. 

 

The computer simulation serves as a design tool to provide important design 

information faster than that possible by wind tunnel tests and thereby making it easier for 

many design trials in a shorter time. It also helps in the study of the influence of overall 

structural layout modifications and changes in cross-sectional shapes more easily. Thus a 
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faster design cycle reduces the design risk to a minimum and makes actual bridge designs 

more cost-efficient.  
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CHAPTER –2 

 

WIND EFFECT ON STRUCTURES 

 

2.1 Introduction 

 In the design of long span suspension bridges, notably suspended bridges, the 

wind action is of primary concern. With the failure of the Tacoma Narrows suspension 

bridge in 1940 in Washington, a deep general realization of the potential aeroelastic 

nature of the wind phenomena was firmly established the world over. Therefore to 

understand the response of long span suspension bridges under wind excitation, the basic 

wind phenomena needs to be clearly understood. Hence this chapter focuses on and 

reviews a number of topics connected with the effect of the wind on long-span 

suspension bridges. 

The aerodynamic effect of wind on bridges are primarily vortex shedding, 

galloping, torsional-divergence, flutter and buffeting. They are discussed below.  

 

2.2       Criteria for the design of a bridge 

             The criteria for the design of long spanned suspension bridges are concerned with 

the static and dynamic responses of the bridge under wind loading. A basic knowledge of 

the wind forces that are required to understand the issues involved in the design is 

explained in the following section. 

            The design of long span suspension bridges is often governed by aeroelastic 

instability. Aerodynamic design involves calculation of the critical velocity for the onset 
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of flutter. It is to be ensured that the wind velocity does not exceed the predicted critical 

velocity to avoid failure due to flutter.  

Arrol and Chatterjee (1981) report that frequencies other than the fundamental 

one should be considered in design. They mention that the designers should remember 

that the position of maximum stress would not always be at mid-span, or a support, and 

the stress value will depend upon the mode shape. In a simply supported span the second 

mode maximum stress is at the quarter points and will have a value four times that of the 

fundamental mode maximum stress, occurring at mid span.  

 

Figure 2.1 Relative bending moment diagrams due to 1st and 2nd modes of vibration. 

(Picture from Arrol and Chatterjee, 1981) 

 

There are static and dynamic concerns to be considered for a safer design of bridges as 

discussed by Simiu and Scanlan (1986) and Larsen (1992). They are described below. 
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2.2.1 Static behavior 

Here the considerations are overturning, excessive lateral deflection, divergence, 

and lateral buckling (Selvam et. al., 1998). Usually the static phenomena are not critical 

for the design of bridges. The issues related to static behavior can be checked by the 

aerodynamic force components like drag force, lift force and pitching moment. The static 

issues are taken care of by the plot of the coefficients of drag, lift and moment against the 

angle of incidence of wind. This is explained in chapter four. 

 

2.2.2 Dynamic behavior 

From Newton’s second law, the motion of mass is described by the differential 

equation  

)(tFkxxcxm =++ ���  

Where )(tF  is the time dependent load acting on the mass, k  is the stiffness coefficient 

and c  is the coefficient of damping. This equation can be rewritten in the form  

 
m

tFxxx )(2 2 =++ ωζω���  

Where 
m
k=ω  and 

ω
ζ

m
c

2
= . Here ω  is the natural circular frequency and 2 ωm  is 

the critical damping coefficient. Three cases arise based on ζ  being less than, equal to, 

or greater than unity resulting in under-damped, critically damped and over-damped 

response respectively. 

Dynamic behavior includes the responses due to vortex shedding excitation, self-

excited oscillations and buffeting by wind turbulence (Selvam 1998). Sachs (1978) states 

that suspension bridges could oscillate in two natural modes, vertical and torsional. In the 
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vertical mode, all joints at any cross-section move the same distance in the vertical plane, 

while in the torsional mode every cross-section rotates about a longitudinal axis parallel 

to the roadway.  

 Unlike the static behavior, the dynamic behavior is critical and important to be 

considered during design. 

 

2.3 Aerodynamic Instability 

Aeroelasticity is the discipline concerned with the study of phenomena wherein 

the aerodynamic forces and structural motions interact significantly. When a structure is 

subjected to wind flow, it may vibrate or suddenly deflect in the airflow. This structural 

motion results in a change in the flow pattern around the structure. If the modification of 

wind pattern around the structure by aerodynamic forces is such that it increases rather 

than decreasing the vibration, thereby giving rise to succeeding deflections of oscillatory 

and/or divergent character, aeroelastic instability is said to occur (Simiu and Scanlan, 

1986). The aeroelastic phenomena that are considered in wind engineering are vortex 

shedding, torsional divergence, galloping, flutter and buffeting. 

 

2.4 Vortex Shedding 

Simiu and Scanlan (1986) states that when a body is subjected to wind flow, the 

separation of flow occurs around the body. This produces force on the body, a pressure 

force on the windward side and a suction force on the leeward side. The pressure and 

suction forces result in the formation of vortices in the wake region causing structural 

deflections on the body. The shedding of vorticity balances the change of fluid 
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momentum along the entire body surface (Larsen and Walther, 1997). The shed vortices 

are convected downwind by local mean wind speed and viscous diffusion but will also 

interact to form large-scale coherent structures. The frequency in which the vortices are 

shed dictates the structural response. The structural member acts as if rigidly fixed, when 

the frequency of vortex shedding (also called wake frequency) is not close to the natural 

frequency of the member. On the other hand, when the vortex-induced and the natural-

frequencies coincide, the resulting condition is called lock-in. During lock-in condition, 

the structural member oscillates with increased amplitude but rarely exceeding half of the 

across wind dimension of the body (Simiu and Scanlan, 1986). The lock-in condition is 

illustrated in Figure 2.2. 

In the Figure 2.2, we see that the wake frequency remains locked to that of natural 

frequency for a range of wind velocities. As the velocity further increases, the wake 

frequency will again break away from the natural frequency. The extent of the shedding 

depends on the Reynolds number, which is defined as 

                                                  

   ER  = 
µ

ρVD  

Where  

       ER                  Reynolds number 

       ρ                   density of the fluid 

       V                   velocity of the fluid relative to the cylinder  

       D                   diameter  

      µ                   dynamic viscosity  of the fluid 
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 Figure 2.2 Qualitative trend of vortex shedding frequency with wind velocity during   

lock-in              (Simiu and Scanlan, 1986) 

 
 

Simiu and Scanlan (1986) explain and give an insight into the understanding of the nature 

and extent of the vortex shedding phenomenon for different ranges of Reynolds number 

for two different cross-sections, a plate and a cylinder as shown in Fig 2.3 and 2.4. They 

also report that, the vortex-shedding phenomena is describable in terms of a non-

dimensional number S, which is defined as  

                                                    S=
U

DNS      

where  

        S                   Strouhal number 

        Ns                       frequency of full cycles of vortex shedding 

        D                   characteristic dimension of the body projected on a plane normal to the   

                              mean flow velocity  

        U                   velocity of the oncoming flow  

Vortex Shedding Frequency

Lock-In Region

Structure Natural
 Frequency

WIND VELOCITY

FR
EQ

U
EN

C
Y
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The number S takes on different characteristic constant values depending upon the cross-

sectional shape of the prism being enveloped by the flow. 

 

    

Figure2.3 (a) Re =0.3 

 

  

  

 

 

 

 

 

Figure 2.3 (b) Re = 10   
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Figure 2.3 (c) Re = 250 

 

 

 

 

 

 

 

 
 
 

 

Figure 2.3 (d)   Re >=1000 

 

 

Figure 2.3 (a)-(d)  Flow past a sharp edged plate showing the vortex shedding 

(Pictures taken from Simiu and Scanlan, 1986) 
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Figure 2.4 (a)   Re ≅≅≅≅  1 

     Figure 2.4 (b)   Re ≅≅≅≅  20 

 

 

                    Figure 2.4 (c)   30 ≤≤≤≤ Re ≤≤≤≤ 5000 
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 Figure 2.4 (d)   5000 ≤≤≤≤ Re ≤≤≤≤ 20000      

  Fig 2.4 (e) Re ≥≥≥≥ 200000      

 

Figure 2.4 (a)-(e) Flow past a Circular cylinder 

                 (Pictures taken from Simiu and Scanlan, 1986) 
 

 
From the figures, as illustrated by Simiu and Scanlan (1986), it is seen that for a very low 

Reynolds number, the flow remains the same, just circumventing the obstruction on its 

way. For higher Reynolds numbers, the flow starts to separate around the edges of the 

obstruction and vortices are generated in the immediate wake of the obstruction. 

Thereafter further increase in the Reynolds number causes the creation of cyclically 
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alternating vortices and they are carried over with the flow downstream. From there on, 

the inertial effects become dominant over the viscous effects and turbulence sets in, 

resulting in shear of the flow. So this reasonably illustrates the vorticity phenomenon 

starting from a smooth and low speed flow to a turbulent and high-speed flow. 

 

2.5 Galloping 

Simiu and Scanlan (1986) state that galloping is an instability typical of slender 

structures. This is a relatively low-frequency oscillatory phenomenon of elongated, bluff 

bodies acted upon by a wind stream. The natural structural frequency at which the bluff 

object responds is much lower than the frequency of vortex shedding. It is in this sense 

that galloping may be considered a low-frequency phenomenon. There are two types of 

galloping: Wake and Across-wind. 

 

Wake galloping: It is considered of two cylinders one windward, producing a wake, and 

one leeward, within that wake separated at a few diameters distance away from each 

other. In wake galloping the downstream cylinder is subjected to galloping oscillations 

induced by the turbulent wake of the upstream cylinder. Due to this, the upstream 

cylinder tends to rotate clockwise and the downstream cylinder, anti-clockwise thus 

inducing torsional oscillations. 

 

Across wind galloping: Across wind galloping in a bridge, is an instability that is 

initiated by a turbulent wind blowing transversely across the deck. Across-wind galloping 

causes a crosswise vibration in the bridge deck (Liu, 1991). As the section vibrates 

crosswise in a steady wind velocity U, the relative velocity changes, thereby changing the 
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angle of attack (α). Due to the change in α, an increase or decrease on the lift force of the 

cylinder occurs. If an increase of α causes an increase in the lift force in the opposite 

direction of motion, the situation is stable. But on the other hand if the vice versa occurs, 

i. e., an increase of α causes a decrease in lift force, then the situation is unstable and 

galloping occurs. Fig 2.6 gives an illustration of this process. 

A classical example of this phenomenon is observed in ice covered power 

transmission lines. Galloping is reduced in these lines by decreasing the distance between 

spacing of the supports and increasing the tension of the lines. 

 

                                             Figure 2.5   Wake galloping 

Picture from Simiu and Scanlan (1986) 
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Figure 2.6 Across wind galloping: Wind and motion components, with resultant lift and  

drag, on a bluff cross section. (Picture from Simiu and Scanlan, 1986) 

In the figure, 

       U                  wind velocity 

       Ur,                    relative wind velocity with respect to moving body  

      y�                         velocity across-wind  

       B                 dimension of the section  

       L                  lift force 

       D                  drag force 

 

2.6 Torsional divergence 

Torsional divergence is an instance of a static response of a structure. Torsional 

divergence was at first associated with aircraft wings due to their susceptibility to 

twisting off at excessive air speeds (Simiu and Scanlan, 1986). Liu, 1991, reports that 

when the wind flow occurs, drag, lift, and moment are produced on the structure. This 

moment induces a twist on the structure and causes the angle of incidence α  to increase. 

The increase in α  results in higher torsional moment as the wind velocity increases. If 
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the structure does not have sufficient torsional stiffness to resist this increasing moment, 

the structure becomes unstable and will be twisted to failure. Simiu and Scanlan, 1986, 

report that the phenomenon depends upon structural flexibility and the manner in which 

the aerodynamic moments develop with twist; it does not depend upon ultimate strength. 

They say that in most cases the critical divergence velocities are extremely high, well 

beyond the range of velocities normally considered in design.     

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.7 a. Torsional divergence of an airfoil 

      b. Torsional divergence of Bridge deck     (Picture from Liu, 1991) 
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The aerodynamic moment per unit span is given by 

 )(
2
1 22 αρα MCBUM =  

Where ρ  is density, U is the mean wind velocity, B  is the deck width, α  is the angle of 

twist and MC  is the aerodynamic moment coefficient about the twisting axis. 

At zero angle of attack the value of this moment is 

 0
22

2
1)0( MCBUM ρα =   Where )0(0 MM CC =  

For a small change in α  away from 0=α , αM  is approximated as given by 

 �
�

�
�
�

�
�
�

	


�

�+=
=

α
α

ρ
α

α
0

0
22

2
1

d
dCCBUM M
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Now equating the aerodynamic moment to the structural resisting moment gives 

 αα
α

ρ α
α

k
d

dCCBU M
M =�

�

�
�
�

�
�
�

	


�

�+
=0

0
22

2
1  

Setting 22

2
1 BUρλ = , in the above equation, we get  

 ( ) 0
'

0 MM CCk λαλα =−  

�  '
0

0

M

M

Ck
C
λ

λα
α −

=  

Divergence occurs when α  approaches infinity 

i.e.,  when  '
0MC

kαλ =  

Thus the critical divergence velocity is given as  

 '
0

2

2

M
C CB

k
U

ρ
α=  
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2.7 Flutter 

The phenomenon of flutter is a very serious concern in the design of bridges. The 

failure of the Tacoma’s narrows bridge was due to the flutter. In the later part of this 

chapter, a review of the Tacoma’s Narrows bridge failure is reported to give a better 

insight into the flutter-induced instability that resulted in failure. The term flutter has 

been variously used to describe different types of wind-induced behavior. Flutter can be 

defined as a condition of negative aerodynamic damping wherein the deflection in the 

structure grows to enormous levels till failure once started. It is also known as classical 

flutter. The other types of flutter reported by Simiu and Scanlan (1986) are stall flutter 

and panel flutter. 

 

Stall flutter is a single-degree-of-freedom oscillation of airfoils in torsion due to the 

nonlinear characteristics of the lift (Simiu and Scanlan, 1986). The stall flutter 

phenomenon can also occur with structures having broad surfaces depending on the angle 

of approaching wind. The torsional oscillation of a traffic stop sign about its post is an 

example of this phenomenon. 

 

Panel flutter is a sustained oscillation of panels typically the sides of large rockets, 

caused by the high-speed passage of air along the panel. The most prominent cases have 

been in supersonic flow regimes and so have not appeared in the wind engineering 

context. Flag flutter is closely related to panel flutter. 
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The motion that is caused by the wind flow will either be damped out or will grow 

indefinitely until failure. The theoretical dividing line between these two states is the 

critical flutter condition and the wind speed at this condition is called critical wind speed. 

 

2.8     Methods adopted to study critical velocity for flutter 

 The methods available for studying the aeroleastic instability are the free 

oscillation method and the forced oscillation method.  

 

2.8.1 Free Oscillation Procedure 

This method was used in this work for the study of flutter stability analysis of the 

structure during motion. In this method the structure is elastically suspended and is given 

an initial perturbation in terms of heave or pitch and the structure is left to oscillate 

freely. The lift, drag and moment generated due to the applied displacement is then 

measured and thus a time history data is generated. The governing equations of motion 

for translation and rotation are 

Lhkhychm hh =++ ���         2.1 

MkcI =++ ααα αα ���         2.2 

Here LhIm ,,,, α  and M  represents mass, moment of Inertia, heave, pitch, lift 

and moment respectively. c and k  represents damping and stiffness coefficients with the 

subscripts h  and α  meaning heave and rotation respectively. 

The equations 2.1 and 2.2 can be rewritten as  
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The derivation of 2.3 and 2.4 will be explained in section 4.5 of chapter 4. Thus with the 

knowledge of the lift and moment forces from CFD calculations, for each instant of time 

the equations 2.3 and 2.4 are solved incorporating the fluid structure interaction to get the 

heave and pitch displacements. The pitch angle is then plotted against time. When the 

pitch angle dies down gradually with the passage of time, it means that the critical flutter 

velocity is not reached. When the pitch angle keeps growing it means that the critical 

flutter velocity is reached. Based on these plots the critical flutter velocity is calculated. 

This process is discussed in detail in chapter 4.  

 

2.8.2 Forced Oscillation Procedure 

In this method, the structure is forced in a torsional or heave sinusoidal motion 

relative to the flow with a prescribed frequency and amplitude (Hansen et. al., 1999). The 

lift and moment generated due to this applied force is measured and used for the 

calculation of the aerodynamic derivatives. The calculated aerodynamic derivatives are 

then used for the computation of the critical velocity for flutter. This process is described 

below.  

The lift and moment loads exerted on an oscillating bridge section with 2 degrees 

of freedom namely the vertical or heave motion ( h ) and rotational or pitch motion (α ) 

are given by the following equations (Simiu and Scanlan, 1986). 
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Where 

 
U
BK ω= , is the reduced non-dimensional frequency 

 *
iH  and *

iA ( i =1,2,3,4)                 Aerodynamic derivatives 

 U                 wind velocity  

B                 chord deck width of the bridge 

 

For the pure heave motion, the equations 2.5 and 2.6 become 
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For Sn samples, ( hhML iii
�,,, ), i =1,2,… Sn , the equations 2.7 and 2.8 constitute two sets 

of over determined equations, which can be solved in the least squares sense as reported 

by Walther (1994) as follows. 

The least square formulation for solving the equations 2.7 and 2.8 is  

 L
T
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T
H qSxSS = ,   M

T
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T
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where ),,( *
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and HA BSS = . The right hand side vectors, Lq  and Mq are the lift and moment vectors 
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nL S
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In a similar fashion, for pure pitch motion, equations 2.5 and 2.6 becomes
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Thus the equations 2.7 through 2.10 are solved using the least square principle to obtain 

the eight aerodynamic derivatives. The aerodynamic coefficients as defined by Larsen 

and Walther (1996) are as follows. 

*
2H , *

3H  and *
2A , *

3A are obtained from time dependent lift and moment 

coefficients by a pure torsional oscillatory motion described by )sin()( tt ωαα = .  
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Oscillatory one degree of freedom excitation in a pure vertical motion described by 

)sin()( thth ω= , yields the flutter derivatives *
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Here, φ  is the phase shift of the aerodynamic forces with respect to the imposed motion 

of pure heave or oscillation. 

Once the aerodynamic derivatives are computed, they are plugged into the 

equations of motion for heave and rotation (2.1 and 2.2) as shown below. 
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Rewriting the above heave equation (2.11), we get 
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Substituting angular frequency in heave, hω  and damping ratio in heave, hζ  
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In a similar fashion, the equation for rotational motion follows as 
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These two differential equations (2.13 & 2.14) are now based on the observation, that h  

and α  are harmonic in time with a common frequency at the critical wind speed for the 

onset of flutter. The representation of heave and pitch in the complex notation is used in 

solving the flutter deterministic equations 2.13 and 2.14. The critical velocity for flutter is 

then calculated by plotting curves corresponding to the roots of the real and imaginary 

parts of the flutter determinant equation against the non-dimensional wind velocity as 

illustrated by Walther, 1994 and Larsen, 1995. The intersection point �
�

�
�
�

�
�
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between the real and imaginary root curves defines the critical wind speed for flutter as  
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where cU  is the critical flutter velocity  and cX  is the  ordinate of the point of 

intersection in the plot. 

 

2.9     Critical wind speeds for Flutter 

When the critical wind speed for flutter is exceeded, the structure will become 

unstable and experience excessive deflections. Hence it is an important factor to be 

considered in design. Arrol and Chatterjee (1981) mention the following guidelines. 

 
Vortex shedding: With respect to vortex shedding, if the critical wind speed for 

resonance in vertical and torsional modes (vertical modes only for trusses) is greater than 

the reference wind speed, the static and fatigue stress effects need to be checked from 

amplitude calculations appropriate to the mode shape. 

 
Turbulence Response: If the natural frequency in first mode for vertical or torsional 

deflection is greater than 1 Hz, a dynamic analysis for stress effects need to be carried out 

to account for it. 

 
Classical and Stall flutter: For prevention of this type of instability, the critical wind 

speed is to be greater than 1.3 times reference speed. The designer must ensure one of the 

following. The critical wind speed exceeds the practical limiting value for the given site 

or the resulting amplitudes are of allowable levels. Criteria for acceptability may include 

considerations of fatigue or of user reaction as well as of ultimate strength. 
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2.10 Buffeting 

Buffeting is defined as the unsteady loading of a structure by velocity fluctuations in the 

incoming flow and not self-induced (Simiu and Scanlan, 1986). Buffeting vibration is the 

vibration produced by turbulence. There are two types of buffeting. One type is caused by 

turbulence in the airflow, and the other type is caused by disturbances generated by an 

upwind neighboring structure or obstacle. The first type of buffeting can produce 

significant vertical and torsional motions of a bridge even at low speeds. This buffeting 

induced motion results in a gradual transition to large amplitude torsional oscillations, 

which could lead to the failure of a bridge. If the velocity fluctuations are clearly 

associated with the turbulence shed in the wake of an upstream body, the unsteady 

loading is referred to as wake buffeting. Wake buffeting is common in urban areas with 

many tall structures. 

 

2.11 Tacoma Narrows Bridge Failure 

 The Tacoma Narrows Bridge failure in 1940, at Washington, USA is a classical 

example of the aerodynamic instability failure. Wind wrecked the 2800-ft. main span of 

the bridge on Nov 7, 1940. A wind of 42 mph was responsible for the accident, though 

higher winds had been experienced previously without damage (Bowers 1940). He 

reports that this wind caused a vertical wave motion that developed a lag or phase 

difference between opposite sides of the bridge giving the deck a cumulative rocking or 

side-to-side rolling motion. Failure appeared to begin at mid-span with buckling of the 

stiffening girders. The suspenders snapped and their ends jerked high in the air above the 

main cables, while sections of the floor system several hundred feet in length fell out 
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successively breaking up the roadway toward the towers. Almost the entire suspended 

structure between the towers was ripped away and fell into the waters below, but the 

1100-ft. side spans remained intact. Cables and towers survived and held up the weight of 

the side spans, though the latter sagged about 30-ft. as the towers went back sharply by 

the unbalanced pull of the side-span cables. Bowers reports that about five weeks before 

the failure, on the chance that an aerodynamic failure might be found, a 1:20 model of the 

deck was built and was tested in the wind tunnel. The tests showed the model to be 

aerodynamically unstable in certain winds and this condition was concluded to be the 

source of the oscillations of the bridge itself. The wind tunnel test was followed by 

studies towards remedial measures aimed at modifications that would improve the 

characteristics of the bridge. A contract for the installation of the deflector vanes was 

under negotiation when the collapse occurred.  

 The following pictures, Figures 2.8 –2.13 give an understanding of the 

instabilities the bridge suffered and also shows the mode of collapse during failure. 
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Figure 2.8: This photograph shows the twisting motion of the center span just prior to 
                   failure. 

 
 

 

 
Figure 2.9: The nature and severity of the torsional movement is revealed in this picture     

taken from the Tacoma end of the suspension span. When the twisting 
motion was at the maximum, elevation of the sidewalk at the right was 28 
feet (8.5m) higher than the sidewalk at the left. 
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Figure 2.10: This photograph actually caught the first failure shortly before 11 o'clock as    

the first concrete dropped out of the roadway. Also note bulges in the 
stiffening girder near the far tower and also in the immediate foreground. 

 
 

 
 Figure 2.11: A few minutes after the first piece of concrete fell, this 600 foot section                       

broke out of the suspension span, turning upside down as it crashed in Puget 
Sound. Note how the floor assembly and the solid girders have been twisted 
and warped. The square object in mid air (near the center of the photograph) 
is a 25-foot (7.6m) section of concrete pavement. Notice the car in the top 
right corner. 
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Figure 2.12: This photograph shows the sag in the east span after the failure. With the                     

center span gone there was nothing to counter balance the weight of the side 
spans. The sag was 45 feet (13.7m). Also the immense size of the anchorage 
is illustrated. 

 
 
 

 
Figure 2.13: This picture was taken shortly after the failure. Note the nature of the                       

twists in the dangling remainder of the south stiffening girder and the 
tangled remains of the north stiffening girder. 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

3.1 Introduction 

 In this chapter, a brief survey of the literature and work done by various 

researchers with regard to the modeling of flow around bridges is investigated and 

reported. The different numerical procedures and turbulence models that are used in the 

computational wind engineering are reviewed. The problems and issues in the fluid 

structure interaction modeling is also discussed in this chapter. Many researchers have 

worked on the Great Belt East Bridge section because there is extensive wind tunnel 

results against which their computer models could be validated. 

 

3.2 Techniques for modeling the wind flow 

The methodology to be used in the modeling of flow involves solving the 

structure and fluid equations simultaneously incorporating the fluid structure interaction. 

The solution is based upon a grid that is generated in the domain of the fluid flow around 

the structure. The generation of the grid is very important and critical in order to get the 

correct results. The grid generation involves several issues that need to be addressed. 

Hence those details are discussed in a separate chapter. The different types of methods 

that are adopted to solve the governing equations are the Finite Element Method (FEM), 

Finite Difference Method (FDM) or the Discrete Vortex Method (DVM). The turbulence 

in the flow is to be modeled using a turbulence model. The widely used turbulence 
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models are the Reynolds averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) 

and Vortex Method (VM). 

 

3.2.1 Computational Methods 

When compared with FEM, the FDM takes less computational time and storage 

space for the same number of grid points. These are some of the advantages of FDM over 

FEM. But at the same time FDM is geometrically restrictive whereas FEM is good for 

complex geometrical shapes and is flexible to impose any type of boundary conditions. 

Also, the accuracy of the FEM is much higher than that of FDM. (Hughes, 1993). FEM 

can approximate the convection term in the Navier-Stokes equations with more accuracy 

than FDM (Selvam, 1998). 

The FEM and FDM approximates the unknowns into a set of simultaneous 

equations of the type AX=B. These equations can be solved by many procedures like 

Gauss-elimination, Gauss-Seidel and Preconditioned conjugate gradient (PCG) methods. 

Though the solving of pressure equation takes 80% of the time, the usage of 

Preconditioned conjugate gradient (PCG) solver makes the iterations faster and speeds up 

the convergence  (Selvam, 1994). Larsen and Walther (1996a) have demonstrated 

reasonably good success with DVM, but it takes a lot of time and storage space for the 

3D model. In this work, the FEM was used for a grid size of 14805 points and the 2D 

model was able to predict the vortex shedding vividly and the flutter velocity predicted 

was in good agreement with wind tunnel results. 
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3.2.2 Turbulence Models 

In computational wind engineering, the phenomenon of turbulence can be 

modeled by Reynolds Averaged Navier-Stokes equations (RANS), Direct Numerical 

Simulation (DNS), and Large Eddy Simulation (LES) as reported by Selvam (1995 and 

1998). The relative merits and demerits of these three methods are discussed below. 

 

3.2.2.1  Reynolds Averaged Navier-Stokes equations (RANS) 

The RANS model is widely used in computational wind engineering to model 

turbulent flow. This model uses time - independent equations and solves for Reynolds 

averaged stresses, which represent the effect of turbulence on the model. Based on the 

type of solving Reynolds stresses, the RANS model represents different methods. These 

methods are Eddy Viscosity Models (EVM), Reynolds Stress Models (RSM), and the 

Algebraic Stress Models (ASM). Different EVM models are available including zero-

equation models, one-equation models and two-equation models. The most commonly 

used form is the k − ε  model, which is used by Selvam (1990 and 1992) to compute 

wind-induced pressures around buildings. These models are further explained in Selvam 

(1992a) and compared in Selvam (1995). To solve for Reynolds stresses, the RSM model 

requires six partial differential equations with an additional equation for dissipation. 

Hence, the RSM model requires more computer time and storage. Comparing to RSM, 

the Reynolds stresses are calculated using algebraic equations rather than solving partial 

differential equations as in the ASM model. The ASM model consumes less computer 

time in comparison with the RSM model. 
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The k − ε  model is quite popular and can simulate a variety of flows. Its main practical 

limitation is the assumption of isotropic eddy viscosity. Another disadvantage of this 

method is that it cannot give time-dependent value like peak pressure. 

 

3.2.2.2  The Direct Numerical Simulation (DNS) 

In DNS, all eddies down to the dissipation scale must be simulated with accuracy. 

This drastically increases the number of grid points and so consumes much more 

computer time and storage. It is usually not economical to apply this method to wind 

engineering problems with available computer resources. 

 

3.2.2.3  The Large Eddy Simulation (LES) 

The LES model uses time dependent equations and has the advantage of 

generating a time dependent flow field. In the LES model, eddies which are larger than 

the grid size, are simulated. The smaller eddies, occurring below the limit of numerical 

resolution, are simulated using other methods, such as eddy viscosity model (Selvam, 

1997). Eddies significantly larger than the grid size are calculated in detail so that their 

turbulent properties are modeled correctly. Selvam (1997) and Selvam and Peng (1997 

and 1998) used this model to compute pressures on the Texas Tech University (TTU) 

building.  The disadvantage of this model is that it consumes more computer time and 

storage than the RANS. Due to developments in computer techniques, it is possible to use 

LES for the prediction of wind problems. In this report, the LES turbulence model is 

used.  
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3.3 Fluid-Structure Interaction (FSI) Modeling 

 The FSI problem is intricate and complicated to solve because the structural 

equations are formulated in the Lagrangian co-ordinate system whereas the fluid 

equations are in the Eulerian co-ordinate system (Selvam and Govindaswamy, 2000). 

They also state that the FSI modeling needs the simultaneous solving of both the 

equations of structure and fluid. A moving grid at each time step for the fluid portion is 

necessary for the solution process. The different approaches in use at this time are 

Arbitrary Lagrangian-Eulerian (ALE) formulation (Nomura and Hughes, 1992, Selvam et 

al. 1998 and Tamura et al., 1995), co-rotational approach (Murakami and Mochida, 1995) 

and dynamic meshes (De Sampaio et al., 1993).  

The co-rotational approach may be easier to implement by adding extra terms in 

the Navier-Stokes (NS) equations for movements in one direction. Therefore, it will be 

difficult to apply for general problems. In the dynamic mesh approach, for each time step 

a new mesh is formulated and hence needs a very sophisticated grid generator. In the 

ALE approach, grid can be moved as a whole in a rigid fashion with constant velocity for 

each node as reported by Tamura et. al. (1995) or with different velocity for each node in 

a flexible manner as reported by  Selvam et. al. (1998) and Nomura and Hughes (1992). 

Moving the grid, as a whole is preferred for FSI problem since the structure has rigid 

body movement. If the structure is very flexible and each node on the structure is 

moving, then the latter grid moving procedure has to be used. In the ALE procedure, 

geometric conservation laws (GCL) are violated if the equations are solved as such 

(Thomas & Lombard, 1979 and Ferziger & Peric, 1999). In this work the GCL error is 

reduced by using the corrections similar to the one reported by Thomas & Lombard, 1979 
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and Ferziger & Peric, 1999. Moving the grid as a whole may be computationally easy to 

apply. In this work the bridge deck is assumed to be rigid and the rigid body moving 

technique is used in this research. 

The critical flutter velocity can be calculated using free oscillation procedure or 

forced oscillation procedure as explained in chapter two. The free oscillation procedure 

was used by Frandsen & McRobie (1999), Enevoldsen et al. (1999), Nomura & Hughes 

(1992), Mendes & Branco (1995) and Selvam et al. (1998). Larsen and Walther (1997) 

and Enevoldsen et. al. (1999) used the forced oscillation procedure. In this work the free 

oscillation procedure is used and the critical flutter velocity is computed in a few 

computational runs. 
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CHAPTER 4 

 

COMPUTER MODELING 

 

4.1 Introduction 

 In this chapter, the underlying concepts related to the computer modeling of the 

flow around bridges are discussed. The issues related to solving the equations of structure 

and fluid numerically are explained with reference to the Fluid Structure Interaction. The 

solution procedures and the pertinent equations for the fluid and the structure are stated 

and enunciated. The relevant boundary and initial conditions and the advantages of the 

solution procedures adopted are also studied.  

 

4.2 The Structure 

The structure used in this work is the Great Belt East Bridge(GBEB) girder 

section. The GBEB is a 3 span box girder suspension bridge of span lengths 535m-

1624m-535m, which carries a four-lane motorway across the international shipping route 

of the Great Belt, Denmark (Larsen et. al. 1999). The design of the bridge was initiated in 

1989 and opened to traffic in 1998 after construction. Two different cross-sections were 

used for the approach and the suspension spans as shown in Figures 4.2 and 4.3. From 

Figure 4.1, it can be seen that the center of gravity for the suspension section is different 

from the shear center and lies above the shear center. This is worth noting in the sense 

that the section rotates about the shear center due to the moment, whereas the 

translational displacement occurs about the center of gravity. Since both are located along 

the line of symmetry, there is no coupling of the rotational and translational 
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displacements. Tacoma’s Narrows bridge is also shown here as a comparison against the 

GBEB bridge section. 

 

Figure 4.1 Cross-section of the Great Belt East Bridge (GBEB) suspension span. 

(All dimensions are in mm). Picture from Walther, 1994. 

Figure 4.2 Great Belt East Bridge girder - Approach span 

 

Figure 4.3 Great Belt East Bridge girder - Suspension span 
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Figure 4.4 1st Tacoma Narrows Bridge 

(The pictures of bridge cross-sections are from Larsen and Walther, 1996) 

 
Structural property Mass(Kg/m) Inertia(Kgm2/m) fh (Hz) fαααα (Hz) 

GBEB Suspension 

GBEB Approach 

1st Tacoma Narrows 

22.7* 103 

16.0*103 

1.3*103 

2.47*106 

1.05*106 

28.19*103 

0.099 

0.46 

0.13 

0.272 

2.76 

0.20 

Table 4.1. Structural properties of bridge cross sections (Larsen 1996). 

 

4.3 Flow Parameters 

 The flow is characterized by parameters like Reynolds number, Strouhal number, 

coefficient of drag force, lift force and moment. They are defined as follows. 

eR  = 
υ

VB            4.1 

dC  = 
BWV

Fx
25.0 ρ

 

lC  = 
BWV

Fy
25.0 ρ

 

mC  = 
WBV

M
225.0 ρ
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tS = 
TV
H  

Where  

WHB ,,          width, height, length in the z direction of the bridge respectively 

yx FF ,        drag and lift forces 

 V    reference velocity, 

 υ   kinematic viscosity, 

 M   moment 

  T                     period of oscillation of the lift forces  

 ρ    density. 

 For 2D computation, W is considered to be one. 

 

4.4 Governing Equations for Flow  

In the modeling, the fluid is assumed to be viscous and incompressible and the 

Navier Stokes equations are used to study and describe the fluid flow around the bridge 

girder. The governing Navier Stokes equations in two and three-dimensions for an 

incompressible fluid using the Large Eddy Simulation (LES) model in general tensor 

notation, as reported by Selvam (2000) are as follows. 

  Continuity Equation: 0, =iiU            4.2 

  Momentum Equation: =−+ jijjti UVUU ,, )( -(
ρ
p +

3
2k ) i,  + jijjit UU )],)([( ,. ++υυ     4.3 

where  

tυ = 2)( hCs 2/
2

ijS ,      
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,., ijjiij UUS +=  

h = 3
321 hhh  for 3D 

h = 21hh  for 2D 

2

��
�

�
��
�

�
=

hC
k

k

tυ
 

Empirical constants sC =0.15 for 2D and 0.1 for 3D and kC =0.094 

Here  

            iU                  mean velocity  

           p                    pressure   

 iV                            grid velocity  

            k            turbulent kinetic energy 

 tυ            turbulent eddy viscosity 

ρ                   fluid density 

 21 ,hh  and 3h               control volume spacing in the x, y, z directions 

For the computation of h , the area is used if it is a two-dimensional model or the volume 

is used if the model is three-dimensional. Here a comma represents differentiation, t  

represents time and i =1, 2 and 3 mean variables in the x, y and z directions. Selvam 

(2000,1998b) reports that to implement higher order approximation of the convection term 

the following expression is used in Equation 4.3 instead of jijUU ,   

2/],))([()( ,, kjikkjjjijj UVUVUUVU −−−− θ                                 4.4 
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He states that depending upon the values of θ , different procedures can be implemented. 

For balance tensor diffusivity (BTD) scheme, tδθ = is used; where tδ  is the time step used 

in the integration. For streamline upwind procedure suggested, θ  is considered as: 

θ  = 1/max (| 1U |/ dx ,| 2U |/ dy ,| 3U |/ dz )                      4.5   

Here 

dydx,  and dz                     control volume length  

21,UU and 3U                   velocities in the x, y and z directions 

In this computation tδθ =  is used. This has less numerical diffusion as compared to 

benchmark problems in Selvam (1998). For moving grid the maximum of the BTD or 0.3 

times equation 4.5 is considered for better stability of the solution. 

      

4.5 Governing Equations for Structure 

 When the wind flows over the structure, the structure is subjected to both 

translation (vertical) and rotational (twisting) motion. Figure 4.5 shows the GBEB section 

with both the vertical and rotating degrees of freedom. The differential equations 

describing both these types of motion are as follows. The equations are non-

dimensionalised with respect to the dimension B and then solved in a non-dimensional 

form. The non-dimensionalised representation of time( t ), vertical displacement( y ), 

angular displacement( )α  and velocity(V ) are as shown below. The asterisk represents 

the non-dimensional value. 

 
B

tVt ∞=*    ;           
B
yy =*   ;            αα =

*
  ;    

B
Vu
ω

∞=*  
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Fig 4.5 Structural model of the GBEB section. 

 
 
 

 
Fig 4.6  The FEM grid system of the suspension span of the GBEB section. 

 
 

4.5.1 Translation motion 

The differential equation for the translatory motion is given by 

)(tFyKym lh =+��              4.6 

where lF          Lift force as described in section 4.3 

 hK                 vertical stiffness 

 y           vertical displacement 

 y��           vertical acceleration  

y

α
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 m            mass 

Rewriting equation (4.6) gives 

 
m

tFyy l
h

)(2 =+ω��   where 2
hω          

m
Kh        4.7 

Non-dimensionalising each of the terms in the above equation, we get  

dt
dyy =�  = 

��
�

�
��
�

�

∞V
Btd

Byd
*

* )(   where  *Byy =  and 
∞

=
V

Btt
*

 

The second derivative becomes  

 2

2

dt
ydy =��  = 2*

*2 )(

��
�

�
��
�

�

∞V
Btd

Byd  = 2*

*22

dt
yd

B
V∞  

Now substituting the non-dimensional terms y��  and y�  and rewriting equation 4.7 in non-

dimensional terms, we get 

m
tFByy

B
V l

h
)(*2*

2

=+∞ ω��            4.8 

Multiplying both sides of (4.8) by 2
∞V
B  gives  

 2
*

2

2
2* )(

∞∞

=+
V

B
m

tFy
V
By l

hω��            4.9 

Now including the lift force, BVCtF ll
25.0)( ∞= ρ  and non-dimensional form of velocity 

BuV hω*=∞  into 4.9, we get the final dynamic equation for translation in the non-

dimensional form as follows. 
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αω
ω

��      where 2B
mRm ρ

=         4.10 

 

4.5.2 Rotational Motion 

The differential equation for rotational motion is given by  

 )(tMKI ααα αα =+��             4.11 

where  αI   Mass moment of inertia 

 α   Angular displacement 

 α��   Angular acceleration 

 αK   Rotational stiffness 

 )(tMα      Force due to moment 

Proceeding in the same manner as previously, rewriting equation (4.11) gives 

 
I

tM )(2 α
α αωα =+��   where 2

αω          
α

α

I
K

       4.12 

Non-dimensionalising each of the terms in the above equation, we get  

dt
dαα =�  = 

��
�

�
��
�

�

∞V
Btd

d
*

* )(α   where  *αα =  and 
∞

=
V

Btt
*

 

The second derivative becomes  

 2

2

dt
d αα =��  = 2*

*2 )(

��
�

�
��
�

�

∞V
Btd

Bd α  = 2*

*2

2

2

dt
d

B
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Now substituting the non-dimensional terms 
..
α , 

.
α  and rewriting equation 4.12 in non-

dimensional terms, we get 
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��            4.13 

Multiplying both sides of (4.13) by 2

2

∞V
B  gives  
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Now including the lift force, 225.0)( BVCtM m ∞= ρα  and non-dimensional form of 

velocity BuV αω*=∞  into 4.14, we get the final dynamic equation for rotation in the non-

dimensional form as follows. 
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�+ αα��      where 4B
I

RI ρ
α=                     4.15 

The ratio of the frequency of heave and pitch oscillation is a factor called whp  that is 

used in the computations. 

The parameters IR , mR  and whp  are calculated from the physical properties of 

the GBEB bridge girder for an air density of ρ =1.228 kg/m3 as given below. 

 4B
I

RI ρ
α= =2.178 

 2B
mRm ρ

= =19.236 

 
αω

ωhwhp = =0.364 
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4.6 Computational Grid 

 A structured body conforming grid was used for the GBEB bridge section in the 

simulation process. As mentioned in the grid generation chapter, several issues like 

variation of spacing, aspect ratio, alignment and size and shape of the elements, optimum 

number of elements is to be considered. Four different grids are generated keeping in 

mind the parameters like the total number of nodes, spacing close to the bridge deck and 

the concentration of density in flow separation regions. The finite element code was run 

using these four grids in order to assess the influence of the grid parameters on the 

results. 

 The grids A and B were generated by an in-house program developed by the 

author. In this program, each line segment of the bridge cross-section was divided into 

zones and the desired number of grid points in each of the zones was fed as an input in 

the data file. The spacing among the points in each zone is calculated by the series of 

geometric progression. At the intersection of the two line segments of the bridge cross-

section, a smooth transition of the grid is ensured by merging the spacing of the previous 

zone into the start of a new zone. Within each zone the spacing is varied in an increasing 

or decreasing fashion according to the direction and nature of the flow occurring around 

that region of the cross-section. Controlling the common ratio in the geometric series of 

progression effects the desired rate of increase/decrease in the variation of spacing. Here, 

the common ratio is defined as the percentage increase or decrease from the previous 

value. 

 The other two grids, namely C and D, were developed using the software 

GRIDGEN (Version 9) developed by NASA Ames Research Center. This software is 
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sophisticated and has more options for the grid generation process. This offers the choice 

of several blending functions and grid point distribution functions. A lot of details are 

mentioned in the Gridgen user manual. It has solvers like elliptic PDE solver and 

algebraic solver that can be iteratively applied to the grid to smoothen it. With 

GRIDGEN, two highly refined grids, C and D with a spacing of 0.0033 and 0.00065 

respectively was developed. The elliptic PDE solver was used to refine and smoothen the 

grid. The tanh grid point distribution function was used in spacing the grid points radially 

from the corner of the bridge section to the outer boundary of the fluid domain. The 

details of the grid types A, B, C and D are given in Table 5.2. The pictures of the grid 

used are shown in Figures 4.9 through 4.14. 

 

Grid Type Grid Points Elements Nodes Spacing close to 
deck 

A 216 x 57 13515 13280 0.002 

B 216 x 63 14805 14570 0.001 

C 302 x 65 20745 20424 0.0033 

D 312 x 57 18807 18476 0.00065 

Table 4.2 Specifications of the configuration of the various grid types used. 

 

4.7 Boundary and Initial conditions 

The computational domain and the boundary conditions used are illustrated in Fig 

4.1 for the fixed grid as reported by Selvam and Govindaswamy (2000). They also state that 

the cylinder surface has no slip condition. The upstream boundary has uniform velocity of 

one in the x direction and zero in the y direction. At the outflow boundary the normal 
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gradient of the velocities are zero and the sides have slip boundaries. The computation is 

done for Re of 105. 

Figure 4.7 shows the schematic representation of the domain chosen for the problem 

and the boundary conditions applied in the computations. 

 

Fig 4.7 Solution domain and the Boundary conditions. 

 

4.8 Finite Element Solution Procedure to solve the Fluid equations 

 The bridge section is subjected to the wind flow and the modeling is done as 

follows. The turbulence is modeled using Large Eddy Simulation (LES) and the 

governing equations are solved by Finite element method (FEM). The pressure on the 

bridge is computed by solving the Navier-Stokes equations and using this pressure the 

new position of the bridge is calculated by solving the structural mechanics equations. 

The flow is now solved over the new position of the structure and the grid is updated and 

the process is repeated for each time step. The time step size is calculated using a CFL 

(Courant-Frederick-Lewis) number less than one as reported by Selvam (1998). The Navier-

Stokes equations are solved by Finite element procedure in a non-dimensional form. The 
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velocity and pressure are approximated using equal order interpolation. Eight noded brick 

element is used for 3D and four noded quadrilateral element is used for 2D. 

The Navier-Stokes equations are solved using an implicit method suggested in 

Selvam (1998) in a four-step advancement scheme as follows: 

Step 1: Solve for iU  from equation 5.3.  

Step 2: Get new velocities as ),(*
iii ptUU δ+=  where iU is not specified 

Step 3: Solve for pressure from iip ),,( = tU ii δ/,
*  

Step 4: Correct the velocity for incompressibility: ),(*
iii ptUU δ−=  where iU  is not 

specified 

In step 1, the diffusion and higher order convection terms are considered implicitly 

to be in the current time and the first order convection terms are considered explicitly from 

the previous time step. Implicit treatment of the convective and diffusive terms eliminates 

the numerical stability restrictions. The pressure is considered in the right hand side of the 

equation. This set of equations leads to a symmetric matrix and the preconditioned 

conjugate gradient (PCG) procedure is used to solve. For simplicity here on 
ρ
p  is 

considered as p . Step 2 eliminates the checkerboard pressure field created when using 

equal order interpolation for velocity and pressure in the case of FEM.  

The equations are stored in a compact form as discussed in Selvam (1998). To solve 

the velocities an under-relaxation factor of 0.7 is used. The iteration is done until the 

absolute sum of the residue of the equation reduces to 1x10-7 times the number of nodes for 

each time step. Usually the pressure and momentum equations take about 50 and 10 

iterations for PCG solution respectively as reported by Selvam and Govindaswamy (2000). 
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4.9 Finite Element Scheme to solve the equations for Structure    

 Once the Navier-Stokes equations are solved, the pressure and velocity from the 

flow is obtained. This calculated pressure is applied as a force over the bridge section. 

The force along the x direction is the drag force ( dC ), in y direction it is the lift force 

( )lC  and the force inducing a rotation is the moment ( )mC .  The results of the solution of 

fluid equations, in terms of the lift ( dC ) and moment ( mC ) coefficients along with the 

values of the non-dimensional velocity ( *U ), IR , mR and whp  are fed into the equations 

of motion for structure as given by (4.10) and (4.15). The resultant displacement in the 

form of heave ( h ) and pitch ( )α  is obtained by solving the non-dimensional form of the 

translatory and rotational equations of motion as given by 4.10 and 4.15 respectively. The 

bridge rotates about the shear center and moves vertically from the center of gravity. 

Since both these displacements occur along the line of symmetry, there is no coupling. 

The structural dynamics equations are solved in time explicitly using the central 

difference integration scheme. A constant time step size of 0.001 is used as against the 

variable time step size, used for the fixed computations.  A time history of the data for 

these five variables, namely ,,,, hCCC mld  and α are calculated and plotted.  

 

4.10 Moving Grid 

An arbitrary Lagrangian Eulerian (ALE) co-ordinate system is used for the 

description of both the structure and the fluid in the computational domain. Here the grid 

is moved according to the fluid structure interaction using the rigid body moving method. 

In this method, the grid is treated to be a rigid one during the flow and moved as a whole. 

The convective flux terms of the equations are modified in order to incorporate the 
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change in velocity of the moving elements. The correction is made by subtracting the 

velocity of the grid jV  from the velocity of the fluid jU as shown by equation 4.4. The 

grid is treated as rigid and rotated as a whole about the shear center of the bridge section 

to match the corresponding structural deflections calculated during each time step. Thus 

the same grid is used for updating at each time in conformance with the flow. 

 The variables ,,,, *UwhpRR mI  and time step, as discussed in section 4.5 are 

given as input parameters in the moving bridge program and the response is plotted 

against time and the flutter velocity is calculated from these plots.  

 

 

 

 

 

 

 

 

 

 

 

 

                (a) Initial grid 
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     (b) Displaced grid 

Fig 4.8 (a)-(b) Movement of grid using the rigid body method. 

 

4.11 Critical Flutter Velocity computation for Bridges 

 The critical velocity for bridges is calculated using the free oscillation procedure. 

In the Free motion of the bridge, the aeroelastic stability is observed directly. Here the 

cross-section is elastically suspended in the flow and the stability of the cross-section is 

observed for various wind speeds. In this procedure the bridge cross-section is given an 

initial perturbation of 1.8° and the subsequent displacements on the structure in-terms of 

heave and pitch is observed. The pressure is computed for the given position of the bridge 

by solving the Navier-Stokes equations. The force along x direction represents drag, the y 

direction represents lift, and the force that causes rotation represents moment. This pressure 

force is then applied at the center of gravity and the moment force is applied at the shear 
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center and the non-dimensional structural dynamic equations are solved. The solution gives 

the heave and pitch displacements. The grid is now updated by applying these displacements 

in a rigid body fashion. The grid velocity to be applied is the difference in the position from 

one time step to the next divided by the time step size. This process is continued for several 

times steps. The grid velocity is then incorporated in the Navier stokes equations (equation 

4.4) to account for the movement of grid. The plot of the bridge position in time for various 

approach wind speeds gives the detail of the aeroelastic stability. The model is run for 

various non-dimensional velocities ranging from 0.4 to 1.5 to study the stability of the 

bridge during motion. This initial perturbation dies down to zero and stabilizes as time 

progresses, if the velocity is less than the critical flutter velocity. As the models are run 

with increasing velocities, the flutter velocity is reached and the initial perturbation 

gradually increases in time till it reaches catastrophic levels before it fails. The critical 

flutter velocity may be calculated in a few computer runs from the time history plots of the 

motion-induced response from the structure. This is explained in detail in the chapter 6.  
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Fig 4.9 Grid-A 

 
 
 
 

 
                           Fig 4.10 Grid-B                                                     Fig 4.11 Grid-C  
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Fig 4.12 Close-up view of Grid-A 
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Fig 4.13 Close-up view of Grid-B 
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Fig 4.14 Close-up view of Grid-C 
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CHAPTER 5 

 

GRID   GENERATION 

 

5.1 Introduction 

  The process of grid generation is the first and foremost step and is also the most 

vital part in the world of finite element/finite difference analysis. To solve a physical 

problem numerically the computational domain needs to be discretized into a collection 

of points or elemental volumes. This network of discrete points or volumes is called the 

grid. The governing partial differential equations are solved numerically upon these grid 

points to yield a solution over the domain. The most economical distribution of grid 

points requires that the grid be influenced by both the geometric configuration and by the 

physical solution being done thereon. The grid generation becomes a key issue because it 

is at the grid points in the mesh wherein, the desired parameters like pressure, stress, 

strain, or velocity based on the nature of the problem are calculated. So the disposition of 

the grid points in the model to a necessary and sufficient extent dictates the validity of the 

results in the computations.  

Since resources are limited in any numerical solution, it is the function of the 

numerical grid generation to make the best use of the number of points that are available, 

and thus to make the grid points an active part of the numerical solution. In this chapter, 

the types of grid and the important issues in the grid generation will be discussed. 
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5.2 Types of Grid   

 There are basically two types of grids depending upon the method of generation. 

They are Structured Grid and Unstructured Grid.  

 

5.2.1 Structured Grid 

In a structured mesh, each interior nodal point is surrounded by exactly equal 

number of adjacent elements. We can identify two directions within the mesh by 

associating a coordinate system called ξ,η system or IJ (IJK incase of 3D) system with 

the mesh lines. The grid lines are the lines of constant ξ or lines of constant η. The node 

point (ξ,η) is formed with the intersection of grid lines ξ and η. If we number the nodes 

consecutively along lines of constant η, and so that the numbers increase as ξ increases, 

we can immediately identify the nearest neighbors of any node say, J on the mesh as 

shown in Fig 5.1. Typically quadrilateral or hexahedral elements are common in the 

structured type of meshes.  

 

5.2.2 Unstructured Grid 

The notable feature of an unstructured mesh is that the number of cells 

surrounding a typical interior node of the mesh is not necessarily constant. Thus the 

unstructured mesh generation relaxes the node valence requirement and allows any 

number of elements to meet at a single node unlike the structured mesh. Connections 

from point to point are listed, instead of using the IJK arrays, which structured grids use. 

The nodes and the elements are numbered and the number of nodes which belong to each 

element are stored (Fig 5.5). Triangle and tetrahedral meshes are most common when 
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referring to unstructured meshing, although quadrilateral and hexahedral meshes can also 

be unstructured. 

 

5.3 Advantages and Disadvantages 

A structured grid approach offers advantages in solution algorithm efficiency and 

implementation. This is particularly true in CFD, where a considerable technology base 

has been developed using solution algorithms for structured grids as reported by Peraire,  

Morgan, and Peiro (1990). These authors say that the structured grid offers choice of an 

appropriate solution method from among the large number of algorithms, which are 

available. The principal advantage of the unstructured approach is that it provides a 

powerful tool for discretizing domains of complex shape. But the disadvantages they 

mention are the limited availability of solution algorithms and the demand on the 

computer memory and CPU.   

 

 

 

 

 

 
 
Fig 5.2 Unstructured mesh discretization   Fig 5.1 Structured mesh discretization

η 
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Fig 5.3 A picture from NASA research center showing the structured and unstructured  

grid around the nose of an aircraft. 
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Fig 5.4 Organization of nodes in a structured mesh of n by m points in the ξ,η directions. 

            

Fig 5.5 Connectivity array for an unstructured triangular mesh. 
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5.4 Issues in the grid generation process 

The grid is a discrete representation of the continuous field phenomenon that is 

modeled and the accuracy and the numerical stability of the simulations depend on the 

choice of grid. In other words the density and distribution of the grid lines determines the 

accuracy with which the model represents the actual physical phenomena. That is why 

the grid generation has been a major challenge. There are certain issues that are to be 

borne in mind in the context of grid generation. They are listed below. 

 

5.4.1 Number of grid points 

 The total number of grid points in the grid should be kept to the minimum needed 

to obtain solutions of the desired accuracy. This condition should be met for both 

structured and unstructured grids and is very significant for computational efficiency. 

This can be achieved by clustering grid points in the region of interest where they are 

most needed and reducing the concentration elsewhere. Where large gradients are 

expected, as in shear layers or mixing zones, the grid should be fine enough to minimize 

the change in the flow variables from node to node. If the grid points are not clustered in 

the regions where needed, solutions obtained may not have meaningful physics due to a 

low accuracy. The classical example is a boundary layer computation. If not enough grid 

points are used where a boundary layer is expected to occur, the boundary layer 

sometimes cannot be even seen. Currently, in the field of computational fluid dynamics, 

the grid points are often clustered near solid wall boundaries. If too many grid points are 

used overall, even currently well-advanced computers may not able to handle the 

computation at all due to a huge memory requirement. Thus, this condition is very 
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important. Hence several computational runs are made in this  work by varying the 

number of grid cells and its associated parameters to find an optimum grid configuration 

for good results. 

 

5.4.2 Body conformance 

 The grid should be boundary or body conforming. That is, one set of grid lines 

should always coincide with the physical boundary of the spatial domain regardless of the 

geometric complexity as reported by Choi (1997). He states that this rule is often met, 

although it is very difficult to generate a boundary conforming grid for a highly curved 

surface. The results vary enormously even when there is a slight variation in the 

proximity of the grid line with the wall of the bridge girder in this problem. As the wind 

flows, the nose of the bridge section separates the flow and shears it sharply, thereby 

letting the wind pass by, over its boundaries. Since the wind- flow process is very rapid 

and dynamic, especially in the close vicinity of the boundary, the manner of distribution 

of grid points, on and closer to the boundaries of the bridge section makes a significant 

difference on the resulting pattern of vortices and the coefficients. Therefore a highly 

dense and coherent grid is warranted over those important regions in order to capture the 

dynamic variation of lift and suction forces better, when compared to far off regions. The 

effect of the spacing parameter is discussed and the results are compared in chapter six. 

 

5.4.3 Orthogonality of the grid cells 

 Grid lines that intersect a boundary should intersect that boundary 

perpendicularly so that derivative boundary conditions can be implemented more easily 
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and accurately. In some problems the temperature or velocity gradient normal to the wall 

surface is equal to zero. These boundary conditions can be easily implemented with a low 

error if the grid lines intersect a boundary orthogonally. At the interior of the spatial 

domain, the angle of intersection between grid lines only needs to be nearly orthogonal, 

but must be somewhere between 45 and 135 degrees as mentioned in the FLUENT 

software manual.  

 

5.4.4 Grid spacing variation 

 In order to minimize a very large number of grid cells and at the same time, 

maintain a sufficient degree of accuracy in the solution, a non-uniform grid is used. In a 

non-uniform grid, the grid spacing is reduced in regions where high gradients are 

expected and increased in regions where the flow is relatively uniform. The spacing 

between grid points should change slowly from a region where grid points are 

concentrated to a region where grid points are sparsely distributed. That is, the rate of 

change of grid spacing should be minimized.  Normally, the spacing between adjacent 

grid lines should not change by more than 20% or 30% from one grid line to the next as 

reported in FLUENT manual. This is an accuracy consideration, primarily impacting the 

accuracy of the diffusion terms in the governing fluid flow transport equations. This 

condition is important because otherwise, the numerical solution procedures in the 

computations may not be stable and robust and the solutions may start to diverge and 

blow off. Also the Fourier components, which make up the solution reflect and refract at 

interfaces where grid spacing changes as mentioned by Choi, 1997.  
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5.4.5 Cell Aspect Ratios 

The aspect ratio of the computational cells is an additional issue that arises during 

the setup of the computational grid. While large aspect ratios may be acceptable in some 

problems, a general rule of thumb might be to avoid aspect ratios in excess of 5:1 

(FLUENT manual). This limit can be acceptably exceeded when the gradients in one 

direction are very small relative to those in the second direction. Excessive aspect ratios 

can lead to stability problems, convergence difficulties, and/or the propagation of 

numerical errors and significantly increase the computational effort. Selvam (1994) 

evaluates the performance of various solution procedures in terms of the CPU (central 

processing unit, a measure of the computational time) and number of iterations for 

various aspect ratios of 1,10,60 and 160. From the paper it is found that as the aspect ratio 

increases there is a significant rise in the CPU time and number of iterations.  

 

5.4.6 Grid Alignment 

One set of grid lines should align with the flow direction (Choi, 1997). This 

condition is important for convection-dominated flows when the aspect ratio of the 

control volume about each grid point is very high and/or when the Navier-Stokes 

equations are used to study such flows. Here, the grid lines are aligned in the direction of 

the wind flow over the bridge girder.  

 

5.4.7 Shape and size of the grid elements 

The shape and size of the grid is very critical in light of the computations run 

using the finite element code. The grid element should be far as possible, have a 

reasonable aspect ratio closer to one. When the shape of the quadrilateral element is very 



 

 70

skew and slender and if the area of the grid cells (of the order of 10 7− ) becomes very 

small, the Jacobian computations in the finite element formulation become very difficult. 

Also, at such skew elements, it necessitates very small time step, in the order of 

0.0001seconds or so, for the integration of the fluid flow equations. This thereby 

increases the computational effort as the number of runs to be computed per second 

increases with lesser time step size. The size of the time step has an inverse relation with 

the computational effort. The lesser the time step size, the more the number of runs per 

second and hence more computational effort and CPU time and vice-versa. Therefore this 

aspect also becomes critical to be taken care of.  

       (a) 

      (b) 

  Fig 5.6 Undesirable Skew Elements in body fitted grid cells. 

 

5.4.8 Numerical diffusion 

A dominant source of errors in multi-dimensional situations is the so-called false 

diffusion or numerical diffusion. The term false diffusion is used because its effect is 

angle too small

angle too large
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analogous to that of increasing the real diffusion coefficient. False diffusion coefficient is 

noticeable only when the real diffusion is small, that is, when the situation is convection-

dominated. The phenomenon of false diffusion arises due to one-dimensional 

interpolation practices being employed in a multi-dimensional situation. Therefore this 

source of error occurs when the flow is oblique to the grid lines and when there is a 

nonzero gradient of the dependent variable in the direction normal to the flow direction 

(FLUENT). 

It is almost impossible to generate one single grid that would satisfy all of the 

conditions listed above at every part of the spatial domain. Therefore, one would need to 

generate several different single grids, each of which satisfies all of the above conditions 

at a different part of the spatial domain. According to the nature of the problem to be 

solved, the same grid is retained throughout the domain or these different individual grids 

are patched together to form a composite grid. Adaptive techniques are resorted to, 

wherever grid refinement is required locally. This is called adaptive meshing. 

 The configurations of grid used for the GBEB suspension span and the method of 

the generation is reported in chapter four. 
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CHAPTER 6 

 

RESULTS 

 

6.1 General Remarks 

The analysis is performed for the bridge cross-section in two broad categories, 

fixed and moving. Different grids varying in terms of the number of elements, spacing 

and density are used in the computations. The effect of grid in the accuracy of the 

prediction of vortex-induced response and critical velocity computation is studied by 

running the models for different grids. Since the flow is very complicated and highly 

non-linear, the mathematical integration techniques and solution strategies used to solve 

the equations of structure and fluid are sensitive to errors. Even if a very small error is 

induced in the solution process, over several iterations of computation, the error gets 

carried over and grows in magnitude during each step in the time marching solution 

procedure and finally blows up to enormous magnitudes. The artificial viscosity or 

numerical diffusion when added to the fluid flow helps to have a better control of the 

numerical stability. But when it is more, the flow becomes diffusive and the results don’t 

represent the actual behavior of the fluid. Hence several trials were made to find the 

lowest value of diffusion coefficient θ , as explained in section 5.4 that yields stable 

results. The coefficient of diffusion θ , is varied from 0.1 to 0.5 in the computations, with 

value of θ  being similar to the first order upwind procedure in finite difference method. 

 All the computations were performed in Sun Microsystems Enterprise 4500 

computer, with 8- 400MHz/4Mb external cache CPU modules and 4Gb-memory 
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expansion. The results of both the fixed and moving grid cases are tabulated and analyzed 

separately and compared with wind tunnel experimental results and also with other 

researchers. The pressure contours, vorticity and vector diagrams are plotted for the 

computational runs and compared. The plots of coefficients of drag, lift and moment 

against time are reported. 

 

6.2       Fixed Grid 

The bridge cross-section is assumed to be rigidly fixed and is restrained against 

any rotational or translational displacements. The model is run for different grid 

configurations and the results are reported in Table 6.1. The grid distribution 216 x 57 

means, 216 points are located along the perimeter of the bridge cross-section and 57 

points in the radial direction towards the boundary of the domain. The spacing is the 

distance between the closest grid line and the boundary wall of the girder cross-section. 

This spacing distance is non-dimensionalized with respect to the width (B=1) of the 

cross-section. Various initial spacing of 0.002B, 0.001B, 0.0033B, 0.00065B are used in 

different grid configurations.  

The input for the fixed grid program is comprised of the number of nodes and 

elements, boundary conditions for elements along the boundary of the bridge cross-

section and the wall of the domain, duration of time and the grid data. The duration of 

time is the amount of time during which the flow is simulated and it dictates the number 

of time steps to be executed. Based on the grid size, the time step size is calculated 

automatically using a Courant-Fredrick-Lewis (CFL) number less than one. For each time 

step, the output is written onto a data file with the values for the coefficient of drag ( dC ) 
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and lift ( lC ). These coefficients are plotted against time using the post processing 

software Tecplot. The dC value is averaged out once the flow stabilizes after the initial 

disturbance. The Strouhal number is calculated from the plot of lC  against time using the 

following relation as explained in section 4.3 of chapter four. 

TV
HSt = ,  

 where  T                     period of oscillation of the lift forces  

           V              reference velocity, 

          H                      height in the z direction of the bridge 

 

Case Grid Points Nodes Elements Spacing Cd St θ  

1 A 216 x 57 13515 13280 0.002 0.0590 0.191  0.3 

2 A ,, ,, ,, ,, 0.0577 0.177  0.1 

3 B 216 x 63 14805 14570 0.001 0.0618 0.167  0.3 

4 B ,, ,, ,, ,, 0.0620 0.140  0.1 

5 B ,, ,, ,, ,, 0.0485 -  0.5 

6 C 302 x 65 20745 20424 0.0033 0.0524 0.193  0.3 

7 D 312 x 57 18807 18476 0.00065 0.0586 0.209  0.3 

 

Table 6.1 Summary of the runs in relation to various grid configurations. 
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 Model by Cd St 

This work (case- 4) 0.062 0.140 

Larsen et. al.(1997) 0.061 0.100-0.168 

Taylor et. al.(1999) 0.050 0.16-0.18 

Wind Tunnel Tests 0.077 0.109-0.158 

 
Table 6.2 Comparison of drag coefficient and Strouhal number obtained from numerical 

simulations and wind tunnel tests (Fixed case). 
 
 
 From the pressure contour diagrams shown in Fig 6.1 through 6.7, we can see the 

distribution of the pressure around the bridge girder section in the domain. The pressure 

contours vary according to the change in the density of the grid and the value of the 

diffusion coefficient. We can easily observe that the concentration of pressure at the nose 

of the bridge section at the front is much higher than any other place. Whereas the nose of 

the bridge at the wake is subjected to a suction or negative pressure. When the diffusion 

is more, the pressure contours along the body of the bridge is more uniformly distributed. 

This can be seen by the pressure contour diagrams with θ =0.3 being more uniform than 

with θ =0.1. Around the nose of the bridge, the pressure is more pronounced when θ = 

0.3 than when θ =0.1. But when the diffusion θ  is 0.5, the flow becomes diffusive and 

the pressure distribution is constant around the bridge as shown in Figure 6.5.  

 The build up of vortices above and below the deck and their transmission 

in the wake region is clearly seen in figures 6.11 and 6.14. From the vorticity diagrams it 

can be easily seen that when the diffusion coefficient θ =0.3, the vortices are more 

pronounced in the wake region as compared to when θ =0.1.  
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 For the sake of experimentation, the grid B model was run with a diffusion 

coefficient of 0.5. From the result it was found that the flow was too diffusive and the 

pressure distribution was uniform all around the section but for the bridge. Also because 

of too much of diffusion there is no vortex formation though the grid is sufficiently dense 

and tight around the corners. Even the plot of drag and lift coefficients against time 

shows no variation and is constant throughout the simulation time. Hence the Strouhal 

number calculation was also not possible. Thus we can see the dominating influence of 

the diffusion coefficient over the flow characteristics.  

 It is observed that, when the grid is dense, i.e., spaced tightly close to the bridge 

deck, the vortex-shedding phenomenon is prominent. This is enunciated from grid B 

where the spacing is much close (0.001) as compared to grid A (0.002). Since the shear 

of wind occurs starting from the nose and along the wall of the bridge, a tight and dense 

grid is required to capture the details. But at the same time when the spacing is made very 

close it results in a heavy increase of elements resulting in increased computational effort. 

From the grids C and D, it is observed that though the spacing is much less as compared 

to grids A and B, there is not much improvement in the drag coefficient value. Hence grid 

B was chosen for further computations in fixed case and all of moving grid cases.  

Frandsen and McRobie (1999) predicted a St of 0.11 – 0.28 for different mesh 

configurations ranging from 3438 elements to 16526 for a Reynolds number of 2.3 x 106. 

They report that the successful simulation of vortex shedding predictions was generally 

inaccurate and the models proved difficult at this time. Further studies by them are 

underway. 
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In this work, the computed results are in good comparison with wind tunnel 

results. 
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       Figure 6.1    Pressure Contour for grid A with θ  = 0.3 
    (Fixed Case) 

 
      Figure 6.2    Pressure Contour for grid A with θ = 0.1 

   (Fixed Case)



 

 79

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.3    Pressure Contour for grid B with θ  = 0.3 

(Fixed Case) 

 
Figure 6.4    Pressure Contour for grid B with θ  = 0.1 

    (Fixed Case) 
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Figure 6.5    Pressure Contour for grid B with θ  = 0.5 

(Fixed Case) 

 

   Figure 6.6    Pressure Contour for grid C with θ  = 0.3 
   (Fixed Case) 
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   Figure 6.7    Pressure Contour for grid D with θ  = 0.3 
  (Fixed Case)

 
Figure 6.8    Vorticity  Plot for grid A with θ  = 0.3 

(Fixed Case) 
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    Figure 6.9    Vorticity  Plot for grid A with θ  = 0.1 

 (Fixed Case) 

 
   Figure 6.10    Vorticity  Plot for grid B with θ  = 0.3 

  (Fixed Case) 
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Figure 6.11    Vorticity  Plot for grid B with θ  = 0.1 

  (Fixed Case) 

 
Figure 6.12    Vorticity  Plot for grid B with θ  = 0.5 

    (Fixed Case) 
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    Figure 6.13    Vorticity  Plot for grid C with θ  = 0.3 
   (Fixed Case) 

   Figure 6.14   Vorticity  Plot for grid D with θ  = 0.3 
(Fixed Case) 
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   Figure 6.15    Vector  Plot for grid A with θ = 0.3 

    (Fixed Case) 

 
     Figure 6.16    Vector  Plot for grid A with θ  = 0.1 

(Fixed Case) 
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        Figure 6.17    Vector Plot for grid B with θ = 0.3 

(Fixed Case) 

 
         Figure 6.18    Vector  Plot for grid B with θ  = 0.1 

    (Fixed Case) 
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        Figure 6.20    Vector  Plot for grid C with θ  = 0.3 

    (Fixed Case) 

 
            Figure 6.19    Vector  Plot for grid B with θ  = 0.5 

(Fixed Case) 
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          Figure 6.21    Vector  Plot for grid D with θ  = 0.3 

    (Fixed Case) 

 
Figure 6.22 Drag and Lift coefficients Vs Time for grid A with θ =0.3     

                                      (Fixed Case) 
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Figure 6.23   Drag and Lift coefficients Vs Time for grid A with θ  = 0.1 

  (Fixed Case)  
 

 
Figure 6.24    Drag and Lift coefficients Vs Time for grid B with θ  = 0.3 

(Fixed Case)  
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Figure 6.25    Drag and Lift coefficients Vs Time for grid B with θ = 0.1 

 (Fixed Case)  

 
Figure 6.26 Drag and Lift coefficients Vs Time for grid B with θ  = 0.5 

 (Fixed Case)  
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Figure 6.27 Drag and Lift coefficients Vs Time for grid C with θ  = 0.3 

(Fixed Case)  

 
Figure 6.28  Drag and Lift coefficients Vs Time for grid D with θ  = 0.3 

 (Fixed Case)  
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6.3 Moving grid 

 In this part of the analysis, the bridge section is moved according to the 

interaction between the fluid flow and the structure. The bridge section is allowed to 

rotate about the shear center and this motion is known as pitching. The vertical motion 

referred to as the translational or heaving motion occurs along the center of gravity. Both 

these motions occur in an uncoupled fashion due to the symmetrical location of the axis 

of shear and center of gravity.  

 The input for the moving grid program comprises additional parameters apart 

from the fixed program which includes IR , mR , U , whp  and dt . These terms are 

defined in section 4.5 of chapter 4. Here 4B
I

RI ρ
α= =2.178, 2D

MRm ρ
= =19.236 and 

αω
ωhwhp = =0.364 for all the cases involving the moving grids. The reduced velocity 

value U  is varied from 0.4 to 1.4 to examine the conditions of flutter and no flutter. The 

time step size dt  is determined from the time step size of the last time step of the fixed 

program rounded up to the nearest 1000th. In the moving grid computations the time step 

is kept as 0.001, which means 1000 iterations are performed for a single unit of time. 

This explains the intensive computational effort involved in the calculations. The velocity 

profile of the grid system from the fixed program is fed as an additional input file for the 

moving program. This helps in reducing the time taken for the bridge to react to the flow 

and stabilize. The program is run for a duration of 100 seconds and the initial 

perturbation is monitored to check for a rise or fall to assess the flutter condition. All the 
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computations are carried out for the moving program using the grid B, since it is found to 

be the optimum grid in terms of computational time, stability and grid size.  

 The output parameters of the moving bridge program are the same as those for the 

fixed program except for the addition of pitch and heave displacements. At each time 

step, the values are written onto an output file. The values of dC , lC , mC , heave and 

pitch are plotted against time. The critical velocity for the onset of flutter is determined 

from the plot of the pitch angle versus time. This plot gives a clear idea of whether the 

deflection is decreasing or increasing in magnitude. When the velocity is below the 

critical velocity for flutter, the initial perturbation gradually dies down. Once the velocity 

exceeds the critical flutter velocity, the deflection increases constantly until failure. This 

growing up or dying down of deflection is easily observed in Figures 6.34 through 6.39. 

The nature of deflection with increasing and decreasing levels as seen in Figures 6.36 and 

6.38 is just as observed in wind tunnel tests with section models when the wind velocity 

is well below the critical flutter wind velocity. It is observed that the mean displacement 

and angular rotation as well as the vibration amplitudes increase with wind velocity.  It is 

found that the torsional mode is more important than the vertical heave mode because the 

instability induced by the former causes high stress levels resulting in failure much earlier 

than the latter.  

The aerodynamic damping is positive as long as the pitch angle decreases in time 

and vice-versa. The plot of the angle versus time is analyzed to study the extent of growth 

or decay. The rate of growth and decay is found by averaging the change in amplitude 

values of the last two periods of the pitch angle vs. time plot. These rates are plotted for 

each U  value as shown in figure 6.29 and the point where the plot crosses the zero 
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decay/growth line (x-axis) is found. This point represents the critical value of U  for the 

onset of flutter. Figures 6.30 through 6.35 shows the examples of negative and positive 

aerodynamic damping for different cases of θ .  

  The results of the moving grid case are given below and the conditions of 

flutter and no flutter are reported as follows.  

 The velocity for critical flutter from the graph is reported as follows for the 

following cases. 

U =1.22 for θ =0.3  

U =1.27 for θ =0.1 

U =1.30 for θ = dt  

It is noted that the critical flutter velocity seems to increase when the θ  becomes 

lesser from 0.3 to dt . This is an interesting inference. This means, the lesser the diffusion 

coefficient from 0.3 to dt , it implies that the Reynolds number is apparently greater, 

thereby making the flow smoother and thus increasing the stability. We can see that the 

flutter starts occurring at U =1.22 in the case of θ =0.3, whereas it only starts fluttering at 

U =1.30 for θ = dt . Thus the bridge sustains itself much longer and the critical limit for 

flutter is higher for lower θ . 

The correct choice of the diffusion coefficient also determines the accuracy of the 

prediction of the critical flutter velocity apart from the numerical issues. The range of  

65-72 m/s for critical flutter velocity is based upon the diffusion coefficient range of 0.1 –

0.3 including the time step value of dt . 

 To study the influence of the grid over the critical flutter velocity, the moving 

bridge model was run on a coarse grid of size 2100 elements. It was found that the flutter 
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didn’t reach until U =1.35. This maybe attributed to the lack of refinement and lower 

density of the grid cells around the bridge section. 

 From the non-dimensional velocity U , the actual velocity is calculated as 

follows. 

 BUV αω=∞  

For U =1.22 

 ∞V  =(1.30) [(2π )(0.272)rad/s] (31m)   

       =64.6 m/s  ~ 65 m/s 

For U =1.35 

∞V  =(1.35) [(2π )(0.272)rad/s] (31m) 

      =71.5 m/s  ~ 72 m/s 

 

   Figure 6.29. Plot of U  Vs. Growth/Decay rate showing the critical velocity 

computation. 
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Once the flutter is initiated, the bridge undergoes enormous deflections until it finally 

fails as shown in the Figures 6.30 through 6.33. The deflections shown in Figures 6.32 

and 6.33 are more than 40 and 90, which cannot exist in reality, because the deflections 

are so enormous that it actually fails much before than that. But since this is a computer 

model we can visualize such enormous deflections. 
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Figure 6.30 U =1.2   (Moving case) 

 

 

 

 

 

 

 

 

      

 

    

Figure 6.31 U =1.25  (Moving case) 
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   Figure 6.32 U =1.3   (Moving case) 

 

 

 

 

 

 

 

 

 

 

  Figure 6.33 U =1.4   (Moving case) 
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          Figure 6.35 Condition for flutter: 3.0=θ , 25.1=U  

 
 

Figure 6.34 Condition for No Flutter: 3.0=θ , 7.0=U  
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            Figure 6.36 Condition for No Flutter: 1.0=θ , 8.0=U  

Figure 6.37 Condition for flutter: 1.0=θ , 3.1=U  
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          Figure 6.38 Condition for No Flutter: dt=θ , 8.0=U  

 

 
Figure 6.39 Condition for flutter: dt=θ , 3.1=U  
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6.4 Comparison of results 

The results of the work done by other researchers for the same GBEB suspension 

span are summarized here. The critical flutter velocity predicted in this model is in good 

agreement with the wind tunnel results. Frandsen et. al. reported that at this time, they 

were not able to predict the flutter velocity accurately and their model needs 

improvement. 

Model by U (m/s) 

This work 65-72 

Larsen et. al.(1997) 74 

Enevoldsen et. al.(1999) 70-80 

Frandsen et. al.(1998) 50  

Wind Tunnel Tests 73 

Table 6.3 Summary of results for moving bridge computations for GBEB suspension 

span. 
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1 Summary 

Computational work done by various researchers and the type of numerical 

methods used by them are reviewed. The FEM, FDM and the DVM methods are 

reviewed and analyzed and their advantages and disadvantages are discussed. The 

different turbulence models in use are surveyed. 

The wind flow around the GBEB bridge is simulated and successfully modeled 

for both the fixed and moving conditions. In the fixed case, the bridge is held fixed 

during the computations over time. In the moving case, the bridge is allowed to oscillate 

about the shear center in accordance with the fluid structure interaction. The Finite 

Element model was used and the turbulence was modeled using the Large Eddy 

Simulation (LES) technique. The flow is solved using the Navier-Stokes equations for an 

incompressible flow. The Euler-backward difference time integration scheme was used to 

solve the Navier-Stokes equations. The moving case of the bridge was solved using a 

central difference time integration method. The rigid body grid movement technique was 

used for updating the grid for each time step during motion of the bridge under wind.  

 

7.2 Conclusions 

The model was able to predict the shedding of vortices above and below the deck 

surfaces and in the wake region as well, during the flow separation caused by the bridge. 

The LES/FEM model was able to capture the vortex shedding reasonably well. The 
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Strouhal number is in good agreement with wind tunnel measurements and other 

numerical modeling results. The drag coefficient is bit lesser than that predicted by wind 

tunnel tests. All the computations are carried out for a Reynolds number of 1 x 105. In the 

moving case, the critical velocity for the onset of flutter was predicted successfully and is 

in good agreement with the wind tunnel results and work done by others. The obtained 

critical flutter velocity of 65-72 m/s agrees well with 73 m/s from the wind tunnel 

measurements. The time step size to be input in the moving grid program was of concern 

in light of the stability of the computational runs. The time step for moving grid was 

chosen to be smaller than the one calculated for the same case on a fixed grid.  

 

7.3 Recommendations for future work 

In this work semi-implicit procedure was used which is based upon the time step, 

lower than the CFL number one. Better procedure to solve the Fluid structure interaction 

(FSI) problem can be investigated. If implicit procedures are used then one can use larger 

time step (Selvam et. al., 1998). The usage of larger time step saves a lot of 

computational time.  

 At this time the running of the moving grid model with 14805 grid points for 

about 100 seconds takes 4 days of Sun Microsystems Enterprise 4500 computer, with 8- 

400MHz/4Mb external cache CPU modules and 4Gb-memory expansion. To reduce the 

computing time and improve the performance parallel-computing techniques can be used. 

Then one can solve the same problem in a matter of few hours.  

Incorporation of the GBEB cross-section with the railings in the computer model 

is also a possible scope for future work. 
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APPENDIX 
 

Configuration of the GBEB section. 
 
Co-ordinate file of the GBEB- approach span with the domain definition 
  
0.71774   3.7702e-2      3.0    2.0 
0.93548    3.2258e-2     3.0   1.0 
1.0              0.0       3.0    0.5 
0.80645     -9.6774e-2     3.0   -1.0 
0.60215     -9.6774e-2     3.0  -2.2 
0.39785      -9.6774e-2    -2.0  -2.2 
0.19355      -9.6774e-2    -2.0  -1.0 
0.0               0.0     -2.0   0.5 
6.4516e-2   3.2258e-2    -2.0   1.0 
0.28226      3.7702e-2    -2.0    2.0 
0.5              4.3145e-2     0.5    2.0 
0.71774      3.7702e-2     3.0    2.0 
 
 
 
Co-ordinate file of the GBEB –suspension with the domain definition  
 
0.75      3.876e-2     3.0     2.0 
0.9864    3.876e-2         3.0        1.0 
1.0          0.0          3.0        0.2 
0.7132   -0.2209          3.0      -1.2 
0.6         -0.2209       3.0       -2.2 
0.4        -0.2209    -2.0    -2.2 
0.2868   -0.2209         -2.0     -1.2 
0.0          0.0           -2.0        0.2 
1.357e-2     3.876e-2       -2.0        1.0 
0.2          3.876e-2       -2.0        2.0 
0.5          5.039e-2        0.5        2.0 
0.75        3.876e-2       3.0        2.0 
 

Here, the first two columns in this data files represents the x and y co-ordinate 

of the points that define the cross-section and located along the perimeter of the 

bridge. The third and fourth columns represents the x and y co-ordinates of the points 

that define the domain 
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	Fig 4.14 Close-up view of Grid-C
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	Cell Aspect Ratios
	The aspect ratio of the computational cells is an additional issue that arises during the setup of the computational grid. While large aspect ratios may be acceptable in some problems, a general rule of thumb might be to avoid aspect ratios in excess of
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